RESM

   

Submission & tracking

For submitting new manuscripts or tracking the existing ones, login or register to the Submission Tracking System.


LOGIN / REGISTER

Special issue

Special Issue Proposals:

The journal of RESM is open to proposals for special issues on emerging related topics. More info is here.

Open to new members

Our journal is open for new team members in various positions, such as: editor, editorial board member, copyeditor, language editor.


For more see link...

LATEST events

PARTNERS




Research Article

Compression strength behaviour of fibre-reinforced concrete made with hoop-shaped waste polyethylene terephthalate fibre

Fadhluhartini Muftah, Norizah Omar, Ahmad Rasidi Osman, Mohd Syahrul Hisyam Mohd Sani

Civil Engineering Studies, College of Engineering, Universiti Teknologi MARA (UiTM) Cawangan Pahang, Bandar Jengka, Pahang, Malaysia

Keywords

Abstract


Compression Strength Behaviour;


Fibre-reinforced Concrete;


Waste Polyethylene Terephthalate;


Hoop-shaped Fibre;


Environmental Problem

Fibre-reinforced concrete (FRC) is a special concrete incorporated with fibre that can replace reinforced concrete for utilising in structural applications. FRC with plastic waste fibre is introduced in construction to resolve the corrosion problem of the reinforced steel bar in the concrete, resolve the cracking on the concrete and minimise the environmental problem which occurred due to plastic bottle waste disposal and non-biodegradable material. The main objective of this study is to determine the compression strength behaviour of waste Polyethylene Terephthalate (PET) fibre with hoop-shaped in FRC in percentages of 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7% and 0.8% weight to weight of cement. For that reason, the waste mineral bottle water is collected, cleaned and cut into 100 mm of length and 5 mm of width to propose hoop-shaped waste PET fibre. FRC with waste PET fibre is tested for its workability in fresh conditions and its water absorption and compression strength in hardened conditions. Furthermore, the tensile test is conducted for determining the stress and strain behaviour of waste PET fibre in two conditions; in single and hoop-shaped. From the experimental activity, the waste PET fibre of 0.5% produced the appropriate compression strength value and recorded a percentage difference approximately of 6.33% for 28 days duration as compared with a control mix. In addition, the percentage difference of the water absorption of all mixes is reported to have in the range of 0.25% to 25.96% when compared with the control mix which is tremendously affected the compressive strength.

© 2023 MIM Research Group. All rights reserved.

LATEST News


21/10/2023 Journal Submission System Upgrade Completed: We're delighted to announce that our Journal Submission and Tracking System has undergone a significant upgrade, aimed at enhancing your experience. We apologize for the delay, and any inconvenience it may have caused. Here are the key enhancements from a user perspective:

Improvements are designed to make your interaction with our journal smoother and more efficient. Please take the upgraded system for a spin and share your thoughts with us. If you encounter any issues or have questions, please don't hesitate to reach out to our support team.


27/12/2022 Reviewer AwardsThe winners of 2022 reviewer awards of Research on Engineering Structures and Materials (RESM) are announced. More information can be found at Reviewer Awards section. 


23/12/2022 Best Paper Award: According to the Advisory Board decision, the paper authored by Nitin Kumar, Michele Barbato, Erika L. Rengifo-López and Fabio Matta entitled as “Capabilities and limitations of existing finite element simplified micro-modeling techniques for unreinforced masonry” is awarded the 2022 Best Paper Award of Research on Engineering Structures and Materials (RESM). 

23/12/2022 Most Cited Paper Award:  According to the Editorial Board evaluation, the paper authored by Aykut Elmas, Güliz Akyüz, Ayhan Bergal, Müberra Andaç and Ömer Andaç entitled as “Mathematical modelling of drug release" is awarded the 2022 Most Cited Paper Award of Research on Engineering Structures and Materials (RESM). 



(More details of the news may be given in the News section)


For more see News...

LATEST AWARDS


2022 Reviewer Awards:

Please, visit Reviewer Awards section for the winners of the 2022 RESM reviewer awards.


2022 Best Paper Award:

The paper authored by Nitin Kumar, Michele Barbato, Erika L. Rengifo-López and Fabio Matta entitled as “Capabilities and limitations of existing finite element simplified micro-modeling techniques for unreinforced masonry” is awarded the 


2022 Most Cited Paper Award:

The paper authored by Aykut Elmas, Güliz Akyüz, Ayhan Bergal, Müberra Andaç and Ömer Andaç entitled as “Mathematical modelling of drug release" is awarded the


abstractıng/ındexıng

  • Asos Indeks
  • CiteFactor
  • Cosmos
  • CrossRef
  • Directory of Research Journal Indexing
  • Engineering Journals (ProQuest)
  • EZB Electronic Journal Library
  • Global Impact Factor
  • Google Scholar
  • InfoBase Index
  • International Institute of Organized Research (I2OR)
  • International Scientific Indexing (ISI)
  • Materials Science & Engineering Database (ProQuest)
  • Open Academic Journals Index
  • Publication Forum
  • Research BibleScientific Indexing Service
  • Root Indexing
  • Scopus
  • Ulakbim TR Index (Tubitak)
  • Universal Impact Factor
  • Scope Database




MIM RESEARCH GROUP

©2014. All rights reserved

Contact :

jresm@jresm.net

editor.jresm@gmail.com


Postal Address:

Kemal Öz Mah. 3. Bilgi Sok., 4A, No:13 Usak/Turkey



Last update

of this page:

05.12.2023

(dd.mm.yyyy)


Go to main page for last version